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Summary

In this white paper, we explore the synergies between quantum computing, artificial
intelligence and machine learning, and quantum networks, providing an overview of the core
technologies, the mutually beneficial potential in combining these technologies, as well as
applications for enhancing computational and security capacities. We’ll cover how Al and
quantum technologies complement each other, offering unique opportunities to address
optimization, error correction, and privacy challenges in secure networking and computing.
We’ll also look at future directions for using Al with quantum technology.

Introduction

Artificial intelligence and quantum networking each provide powerful capabilities as
standalone technologies, revolutionizing fields from data processing and predictive analytics
to network security and complex problem-solving. Al, with its ability to analyze large volumes
of data and identify patterns, has quickly become a cornerstone of innovation in a variety of
sectors. Meanwhile, quantum networking is creating a paradigm shift in data transmission and
security, leveraging quantum mechanics to enable unprecedented levels of security to our
communication networks.

How can these be used together?

The synergies that emerge when Al and quantum networking are combined are even more
powerful. Each technology compensates for limitations in the other, creating a symbiotic
relationship where the strengths of one amplify the other’s capabilities. This white paper
explores the potential synergies where Al can drive the scalability and efficiency of quantum
networks, quantum networking provides the secure infrastructure needed to protect and
extend Al applications, and other synergistic applications.

Classical Artificial Intelligence (AI) and Machine Learning(ML)
Al models can also be broadly categorized into types based on their functionality. Each model
category serves distinct purposes, from data classification to the creation of new data:

Discriminative Models. These models are used for tasks like classification, and
answer questions like “Given this input, what category does it belong to?” For
example, imagine playing a song and then asking someone to identify its musical
genre. This task is analogous to what discriminative models do in classifying data



based on observed patterns. Models that perform these classification tasks are
typically referred to as classifiers.

Generative Models. These models synthesize new data. It's able to model the joint
distribution of the data and its class label, and can answer questions like “Given a
class, make a prediction for a sample that lies within that class.” An analogy for this
would be asking someone to compose a song and then classify the genre of the song.
Alternatively, we could give the genre and ask someone to compose or play a song
within that genre.

A discriminative model models the conditional probability of
p(y | w) class (y) given an input sample (x)
V\V\Analogy: asking someone which musical genre (y) a

data sample particular song (x) belongs to
A generative model models the joint distribution of the input

samples and associated class labels or the class conditional

p(m ’ y) distribution. Able to synthesize data.
Analogy: asking someone to compose or play a song (x)
and tell us the genre (y)
Analogy: asking someone to compose or play a song (x)

p(w | y) / given a genre (y)

It’s interesting to note the connection between discriminative and generative tasks, as shown
by Bayes’ Theorem. This theorem relates the distributions used in each approach, meaning
that, in some cases, a generative model can be adapted to perform discriminative tasks,
however training a dedicated discriminative model is usually more effective. For this reason,
we still treat discriminative and generative models as two distinct types.

Discriminative task Generative task

N

p(zy)  p(zly)p(y)

e

Al leverages predictive models and automation to streamline and solve complex tasks that
have traditionally required human expertise to accomplish. Machine Learning (ML) is a subset
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of Al that focuses on optimizing these predictions through adaptive learning. When
implemented effectively, ML makes accurate predictions from learned patterns in data it's
trained on.

Machine learning can be categorized into three types of statistical learning: supervised
learning, unsupervised learning, and reinforcement learning. Each category provides distinct
functionalities, and there are particular use cases for each type of learning.

In supervised learning, models are trained on data sets that have labeled data, which means
for each data sample given there is a class category associated with that data sample in the
training data. In essence, this method is giving the model the answer that a user wants it to
find within the data set. Once trained, the model will be able to classify new data that's
outside of the training data set, and even make predictions based on patterns learned in the
training.

In unsupervised learning, the training data sets do not have labeled data. The goal of this type
of training is for an Al model to be trained to uncover some patterns or statistical aspects of the
data. Models trained in this way can perform tasks such as clustering, dimensionality
reduction, and anomaly detection.

In reinforcement learning, an agent interacts with an environment to learn optimal behaviors.
Over time, the agent learns which actions lead to the desired result. This method is commonly
used in applications that require sequential decision-making, such as robotics, gaming, and
autonomous navigation.

Overview: Types of Machine Learning Alliro

Dimensionality

Reduction Classification
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Learning Learning
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Specific Machine Learning Methods

The following sections provide specific examples of machine learning models and explain
how each is applied within the Al landscape. These foundational machine learning models
each have different strengths that make them valuable tools.

K-means Clustering: Uncovering Patterns in Unlabeled Data
K-means clustering is an unsupervised learning algorithm designed to identify and group data
points into different sets, or clusters, without the use of labeled data. This method is helpful in
exploring unstructured data and uncovering hidden groupings of data.

How K-means Clustering Works:

1. The algorithm begins with an assumed number of clusters, each represented by a centroid

or center point in the feature space.

2. Each data point is assigned to a centroid based on proximity.

3. After assignment, each centroid is recalculated as the mean position of all data points in its
cluster.

This iterative process continues until the clusters stabilize, meaning that data points no longer
shift between clusters.

K-Means Clustering Aliro

Basic (naive) k-means consists of two steps
which are repeated until convergence:

Associate each sample with a set (cluster)

S; = argmin;||x; — ;||

Update the cluster centroids

My = = > X
1Sil =,
X; €95;

image source: https://medium.com/@sharmashashikant962/case-study-k-means-clustering-76f56ba25¢c3e

K-means clustering is widely used for tasks such as pattern recognition, customer
segmentation, and detecting anomalies in data. Once clusters are formed, the model can be
used to classify new data based on proximity to existing centroids, although it’s primarily used



to understand the structure of the data rather than a strict classifier of data. As can be seen
above, once the algorithm converges the data is partitioned into k different categories.

Kernel Methods: Separating Complex Data with Higher Dimensions

Kernel methods are used to distinguish data points that aren’t easily separable in their original
form. By mapping data to a higher-dimensional space, kernel methods create a more
straightforward classification of complex datasets. Kernel functions perform two main
operations: data transformation and choosing the kernel. Kernel functions, such as the radial
basis function or polynomial kernel, transform data points into higher dimensions. This
transformation creates new relationships between features, making it easier to separate out
classes. Selecting the right kernel function (such as radial basis, polynomial, or sigmoid) is
critical as this determines how the data is restructured and ultimately classified.

Kernel Methods Aliro
Example kernel functions:
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image source: https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d

In the image above, the left part of the diagram shows some data samples, in two classes.
Class One is indicated by the red samples and Class Two by the green samples. Because of
the structure this data, there's no simple decision boundary: a straight line cannot be drawn to
separate these two classes. By using a kernel function to map this data into higher
dimensional space, in many cases a simple decision surface can be devised. The kernel
mapping essentially made the data separable by mapping into this higher dimension. IN order
for this method to be effective, the right kernel function needs to be used, but with the proper
choice the classification is made much easier. One common application of kernel methods is
in Support Vector Machines (SVMs).



Decision Trees: Classification and Regression

Decision trees are versatile models used for both classification and regression tasks. Decision
trees start from a root node, splitting data into branches based on specific feature thresholds.
Each split moves closer to a final classification. The model learns which thresholds minimize
classification errors, making each branch more refined in categorizing data.

While decision trees are effective for many tasks, combining them yields even more
sophisticated models. Two popular ensemble methods are:

e Random Forests. Multiple decision trees are created using random subsets of data and
features. Different sub-samplings of the data can then be applied to each tree, creating
a strong learn model by combining the results of multiple weaker learning models.

e Gradient Boosted Trees. Decision trees are built sequentially, with each tree correcting
the mistakes of the previous one. This approach focuses on reducing errors
incrementally. The training data is weighted more heavily based on the errors that the
previous tree made. Errors are minimized as trees become more sensitive to the errors
that occurred previously. This is another way to combine decision trees into a stronger
learning model.

Decision Trees /'”T“t \ Aliro

Dec?s_ion_ trees perform class_ification by Random
partltlonlng_the input space into subspaces Forest
using decision thresholds in the feature o o0 o o e o
dimensions
—~
O Subtrees operate on
T1 f\ Combine random subspaces of
output AN Predictions features & random
class label subsets of the data
T3 / \
O . Y U .
Cy, C; Cy Cs Gradient-Boosted
Decision Trees
(GBDT)
e o ) e 00 e o
L L |
(e.g. XGBoost)
P?:dr;:;:gﬁs Data samples with
high error in tree (n)

> I )
are weighted higher

) for tree (n+1) training
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Decision trees and their ensembles are widely used for financial modeling, risk assessment,
and fraud detection.



Neural Architectures: Deep Learning with Layers of Neurons

Neural networks are among the most advanced machine learning architectures. They consist
of interconnected computational nodes called neurons. Each neuron in a neural network takes
a weighted sum of its input values, to which a bias term can be added. This weighted sum is
passed through a nonlinear activation function that controls the range of the output. This
allows the network to capture complex patterns in the data. As data flows through the
network, it moves from layer to layer, ultimately reaching the output layer that gives a result. In
a classification task, the neurons in the output layer produce signals. A stronger signal in one
output neuron indicates a higher likelihood that the input data corresponds to one particular
class over another.

Aliro

Neural Networks
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Convolutional Neural Networks (CNNs) are particularly suited for tasks that involve spatial
data. CNNs build on the basic neural network structure by placing constraints on the weights.
This is called weight sharing, which in effect creates pattern matching filters that slide over the
data. These filters are seeking out particular features in the data. The neurons in a CNN will
create a strong signal when these features are detected. Where the activation is highest, these
results are areas of interest - such as edges in an image. CNNs use max pooling, retaining
only the highest activations / strongest signals in each region, to refine the output and discard
less important details. In the final layers, referred to as fully connected layers, the network
generates output neurons that correspond to the number of classification categories.



Convolutional Neural Networks (CNNs) Aliro

CNNs utilize weight-sharing to implement pattern-matching filters
which operate over the data—widely used in computer vision

Example:
VGG-16 CNN Architecture

weight sharing
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Note the successive
(7 convolution+ReLU dimensionality reduction ending
(@) max pooling with fully-connected (FC) layers

fully connected+ReLU

(1000 output categories)

image source: https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

Autoencoders are designed to learn the identity operation to produce an output that matches
the input, but under a constraint that compresses the data into a lower dimensional hidden
layer. The model identifies the key features of the data and then reconstructs that information.
The reconstructed data can be adjusted to create different outputs. In the example below, a
new image is created by making adjustments to the compressed representation.

Autoencoders Aliro

Autoencoders (AE) are models which attempt to learn the identity operation, subject to the constraint
of having lower-dimensional hidden layers. This requires the model to learn an efficient “latent space”
encoding of the data. There are multiple versions of AE, including convolutional autoencoders (CAE),

and variational autoencoders (VAE).

Latent Latent Space Interpolation
(decoded output of latent space vectors)
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image source: https://www.bpesquet.fr/mlhandbook/algorithms/autoencoders.html




Data transformers are components used within neural architectures for learning useful
representations of sequential data. This is particularly useful in Large Language Models. Data
transformers employ something called multi-head self-attention mechanisms which is a matrix
base way to capture relationships between different parts of a sequence. This is what enables
models like ChatGPT to perform complex language tasks. Transformers are key in natural
language processing but also have applications in other data types like images and video.

output matrix going to
stage m

X(m)

MLP «——}——— multilayer perceptron (fully connected
neural network)

multi-head self

MHSA"_ attention
NOTITI <«——— — normalization
4

input matrix from
x (m—1) stage (m-1)

image source: https://arxiv.ora/pdf/2304.10557

Diffusion models are inspired by thermodynamic processes, and are specifically designed for
image synthesis. Diffusion models gradually learn to reverse decision process that allows
them to create images. This process relies on a Markov chain and internal Gaussian
distributions to refine the image through a series of small, sequential steps.

A well-known example of this approach is Stable Diffusion, which generates high-quality
images from random noise.



reverse process (denoising)
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image/reference source: https://arxiv.ora/pdf/2006.11239

Reinforcement learning is a computational approach where an agent interacts with an
environment to learn optimal behaviors. The agent takes actions, and the environment
responds with an updated state and a reward or penalty. Over time, the agent learns a
policy —a strategy for choosing actions—that maximizes its cumulative reward.

Ap
(Action)

S n+1
(Updated State)

Environment

A

n(als)
(Policy)

Variational Quantum Algorithms

Variational quantum algorithms are a class of algorithms that combine quantum and classical
computing capabilities. Here, we’ll explore two key types of variational quantum algorithms:
the Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization
Algorithm (QAOA). Each uses a hybrid approach that involves feedback between quantum
and classical systems to refine and improve results.
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The Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical approach that finds
the ground-state energy of complex systems, such as molecular structures and for this reason
it is very useful in quantum chemistry. In the diagram below, the quantum system performs
computations based on a set of parameters denoted as 0 (theta). Once the quantum
computation is executed, measurements are taken. The classical optimizer then takes the
results of these measurements and determines how well this sampling matched the cost
optimization criteria. Based on these findings, it adjusts the parameters. This process repeats
and over time the quantum system converges toward a solution that closely approximates the
ground state energy.

Variational Quantum Eigensolver: VQE Aliro

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for computing the ground
state energy of a Hamiltonian H of interest. It is typically used for applications such as quantum chemistry.
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Reference: Hybrid guantum-classical algorithms and quantum error mitigation
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Quantum Approximate Optimization Algorithm (QAOA)

Quantum Approximate Optimization Algorithm (QAOA) is primarily applied in discrete
optimization problems, such as logistical planning or graph-based problems. One application
of QAOA is the Max-Cut Problem, a type of graph problem where the goal is to divide nodes
into two groups while also maximizing the number of edges between the groups.

In QAOA, the optimization problem is encoded into two parts within the quantum
computation: a Cost Hamiltonian and a Mixing Hamiltonian. The Cost Hamiltonian represents
the problem to be solved by encoding the specific optimization task. The Mixing Hamiltonian
allows the algorithm to explore a range of possible solutions. The quantum processor samples
solutions from a probability distribution, allowing it to identify potential solutions that have a
high likelihood of meeting the optimization criteria. A classical optimizer then assesses the
quality of the solution and feeds this information back into the quantum system, refining the

solution with each iteration.

. s Feedback Loop
variational parameters

(%,8) = (M,---,7

Vps Biyenns BP)
{} {} measure
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Example MaxCut Problem
’: (p-stages) Assign spin variables on the vertices such that
Cost Mixing the sum of edge weights between anti-aligned
Hamiltonian Hamiltonian Cost is optimized spins is maximized (black edges)
classically

Reference:  https://arxiv.ora/pdf/1812.01041
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Barren Plateaus

One common issue in variational quantum algorithms like VQE and QAOA is barren plateaus.
Barren plateaus occur when the gradients of the cost function become extremely small. This
essentially flattens the optimization landscape. The optimizer can’t determine which direction
to adjust the parameters, as every possible path appears to yield the same minimal gradient

values. This makes the optimization process

classical machine learning and quantum machine learning have sought to mitigate barren
plateaus, and research has shown that adjusting the choice of topologies, initial states, and

slow and ineffective. Researchers in both

activation functions in the network can help eliminate barren plateaus.

Optimization Challenge: Barren Plateaus Aliro

Variational optimization shares a challenge with classical ML due
to the use of classical optimizers. Optimizing a cost function with

respect to a model weight involves the chain rule, leading to
products of factors. This can lead to a problem called barren
plateaus, making it difficult to determine search direction.
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Mitigation: Classical vs Quantum:
e |nitial state choice Both vanishing and exploding gradients are possible with classical
e Limit circuit depth or use skip connections ML but with QML the bounded nature of unitary operations tends to
e Choice of activation functions (a) prevent exploding gradients. QML achieves nonlinearity through

e Choice of ansatz (topology) entanglement or measurements.

Image source:  https://arxiv.org/pdf/2405.05332
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Synergies Between Classical AI and Quantum Technologies
The intersection of classical and quantum methodologies provides a multitude of beneficial
synergies.

Quantum + AI Synergies Aliro

supports/enhances

Classical inspires Quantum

Al/ML Al/ML
extends
input/output
i supports
Classical design
Data

scales

secures Quantum

Networks &
Protocols
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Classical Al Inspiring Quantum Machine Learning

A significant synergy exists in how classical machine learning (ML) methods inspire quantum

machine learning. For many classical ML algorithms, researchers have developed quantum
versions. Some examples of these adaptations include quantum neural networks, quantum
convolutional neural neural networks, quantum auto encoders, quantum support vector

machines, quantum diffusion models and so forth. These quantum adaptations allow classical
algorithms to run directly on quantum data, or the quantum versions improve the performance

of the algorithm.

Scaling Quantum Computing Through Quantum Networking

Building a large, monolithic quantum computer is extremely challenging due to technical
limitations. Many believe that the future of scalable quantum computing lies in quantum
networking. Through quantum networking, smaller quantum processors can be
interconnected to form larger, distributed systems.

This networking approach is instrumental in scaling quantum computing, as it allows for
powerful distributed quantum computing setups, which in turn benefit quantum machine
learning by providing greater computational resources.
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Enhancing Quantum Computing with Classical Al

One of the central challenges in quantum computing is dealing with noise, which can interfere
with accurate calculations. Classical Al offers solutions for managing and mitigating this noise
through quantum error correction and quantum error mitigation techniques.

Quantum error correction involves adding redundant qubits to detect and correct errors in
calculations. Classical machine learning models assist by interpreting complex error
syndromes (non-destructive measurements that detect errors) to determine the corrective
actions required for data integrity. Post-processing methods in quantum error mitigation can
enhance the results of quantum computing.For example, methods exist for using ML to
generate a prediction of the ideal noiseless result of a quantum computation derived from the
noisy measured output values. By using classical Al for error correction and mitigation,
quantum systems become more resilient, leading to more accurate results, particularly in
quantum machine learning applications.

Designing Quantum Networks with Classical ML

Designing efficient quantum networks is complex, involving multiple parameters, degrees of
freedom, and a wide variety of algorithms. Classical ML, especially reinforcement learning,
aids in optimizing network configurations and protocols for certain networking tasks, such as
how long to hold an entanglement before regenerating it. This enhances the stability and
efficiency of quantum networks. Some reinforcement learning systems have also
autonomously discovered new protocols for entanglement distribution, even outperforming
manually designed methods in specialized cases such as where two noise channels have
different kinds of noise on them

Privacy Enhancements in Al through Quantum Networking

Data privacy remains a critical area in Al, as machine learning models trained on data can
sometimes reveal sensitive information. In some cases, specific information can be inferred
from the model parameters themselves. Quantum networks enable the secure transmission of
data with information-theoretic security, which is theoretically immune to interception. In
addition to protecting data in transit, blind quantum computing architectures that are enabled
by quantum networks can facilitate even greater privacy protections. In blind quantum
computing, users can execute quantum algorithms with quantum data in such a way that the
quantum server cannot extract any information about the data or the algorithm.

These advancements enable privacy-preserving Al, allowing sensitive data to be analyzed

without risk of exposure—a valuable breakthrough for sectors requiring high confidentiality,
such as finance and healthcare.
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Future Directions and Security Implications

The convergence of Al, quantum computing, and advanced secure networks marks a
transformative shift in computational and security capabilities. These technologies individually
provide enormous benefits, but together they provide even more opportunities for
advancement.

Entanglement-based quantum networks are being built today by a variety of organizations for
a variety of use cases — benefiting organizations internally, as well as providing great value to
an organization’s customers. Telecommunications companies, national research labs, and
systems integrators are just a few examples of the organizations Aliro is helping to leverage
the capabilities of quantum secure communications.

Building entanglement-based quantum networks that use entanglement is no easy task. It
requires:

e Emerging hardware components necessary to build the network.

e The software necessary to design, simulate, run, and manage the network.

e A team with expertise in the fundamental science of entanglement-based quantum
networks and classical networking.

e Years of hard work and development.

This may seem overwhelming, but Aliro is uniquely positioned to help you build your quantum
network. The steps you can take to ensure your organization is meeting the challenges and
leveraging the benefits of the quantum revolution are part of a clear, unified solution already at
work in networks like the EPB Quantum Network® powered by Qubitekk in Chattanooga,
Tennessee.

AliroNet™, the world’s first full-stack entanglement-based network solution, consists of the
software and services necessary to ensure customers will fully meet their advanced secure
networking goals. Each component within AliroNet™ is built from the ground up to be
compatible and optimal with entanglement-based networks of any scale and architecture.
AliroNet™ is used to simulate, design, run, and manage quantum networks as well as test,
verify, and optimize quantum hardware for network performance. AliroNet™ |everages the
expertise of Aliro personnel in order to ensure that customers get the most value out of the
software and their investment.

Depending on where customers are in their quantum networking journeys, AliroNet™ s
available in three modes that create a clear path toward building full-scale
entanglement-based secure networks: (1) Emulation Mode, for emulating, designing, and
validating entanglement-based quantum networks, (2) Pilot Mode for implementing a
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small-scale entanglement-based quantum network testbed, and (3) Deployment Mode for
scaling entanglement-based quantum networks and integrating end-to-end applications.
AliroNet™ has been developed by a team of world-class experts.

To get started on your Quantum Networking journey, reach out to the Aliro team for additional
information on how AliroNet™ can enable secure communications.

www.alirotech.com
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